Tilting Modules and Universal Localization
نویسندگان
چکیده
We show that every tilting module of projective dimension one over a ring R is associated in a natural way to the universal localization R → RU at a set U of finitely presented modules of projective dimension one. We then investigate tilting modules of the form RU ⊕ RU/R. Furthermore, we discuss the relationship between universal localization and the localization R → QG given by a perfect Gabriel topology G. Finally, we give some applications to Artin algebras and to Prüfer domains.
منابع مشابه
Universal Derived Equivalences of Posets of Tilting Modules
We show that for two quivers without oriented cycles related by a BGP reflection, the posets of their tilting modules are related by a simple combinatorial construction, which we call flip-flop. We deduce that the posets of tilting modules of derived equivalent path algebras of quivers without oriented cycles are universally derived equivalent.
متن کاملOne-tilting Classes and Modules over Commutative Rings
We classify 1-tilting classes over an arbitrary commutative ring. As a consequence, we classify all resolving subcategories of finitely presented modules of projective dimension at most 1. Both these collections are in 1-1 correspondence with faithful Gabriel topologies of finite type, or equivalently, with Thomason subsets of the spectrum avoiding a set of primes associated in a specific way t...
متن کاملTilting Modules over Almost Perfect Domains
We provide a complete classification of all tilting modules and tilting classes over almost perfect domains, which generalizes the classifications of tilting modules and tilting classes over Dedekind and 1-Gorenstein domains. Assuming the APD is Noetherian, a complete classification of all cotilting modules is obtained (as duals of the tilting ones).
متن کاملInfinite Dimensional Tilting Modules and Cotorsion Pairs
Classical tilting theory generalizes Morita theory of equivalence of module categories. The key property – existence of category equivalences between large full subcategories of the module categories – forces the representing tilting module to be finitely generated. However, some aspects of the classical theory can be extended to infinitely generated modules over arbitrary rings. In this paper,...
متن کاملTilting in module categories
Let M be a module over an associative ring R and σ[M ] the category of M -subgenerated modules. Generalizing the notion of a projective generator in σ[M ], a module P ∈ σ[M ] is called tilting in σ[M ] if (i) P is projective in the category of P -generated modules, (ii) every P -generated module is P presented, and (iii) σ[P ] = σ[M ]. We call P self-tilting if it is tilting in σ[P ]. Examples ...
متن کامل